
Database System Concepts, 7th Ed.

©Silberschatz, Korth and Sudarshan
See www.db-book.com for conditions on re-use

Chapter 3: Introduction to SQL

©Silberschatz, Korth and Sudarshan4.2Database System Concepts - 7th Edition

Outline

 Overview of The SQL Query Language

 SQL Data Definition

 Basic Query Structure of SQL Queries

 Additional Basic Operations

 Set Operations

 Null Values

 Aggregate Functions

 Nested Subqueries

 Modification of the Database

©Silberschatz, Korth and Sudarshan2.3Database System Concepts - 7th Edition

Example of a Instructor Relation

attributes
(or columns)

tuples
(or rows)

©Silberschatz, Korth and Sudarshan2.4Database System Concepts - 7th Edition

Attribute

 The set of allowed values for each attribute is called the
domain of the attribute

 Attribute values are (normally) required to be atomic; that is,
indivisible

 The special value null is a member of every domain.
Indicated that the value is “unknown”

 The null value causes complications in the definition of many
operations

©Silberschatz, Korth and Sudarshan2.5Database System Concepts - 7th Edition

Relations are Unordered

 Order of tuples is irrelevant (tuples may be stored in an arbitrary
order)

 Example: instructor relation with unordered tuples

©Silberschatz, Korth and Sudarshan2.6Database System Concepts - 7th Edition

Database Schema

 Database schema -- is the logical structure of the database.

 Database instance -- is a snapshot of the data in the
database at a given instant in time.

 Example:

• schema: instructor (ID, name, dept_name, salary)

• Instance:

©Silberschatz, Korth and Sudarshan2.7Database System Concepts - 7th Edition

Keys

 Let K  R

 K is a superkey of R if values for K are sufficient to identify a unique
tuple of each possible relation r(R)

• Example: {ID} and {ID,name} are both superkeys of instructor.

 Superkey K is a candidate key if K is minimal

Example: {ID} is a candidate key for Instructor

 One of the candidate keys is selected to be the primary key.

• which one?

 Foreign key constraint: Value in one relation must appear in another

• Referencing relation

• Referenced relation

• Example – dept_name in instructor is a foreign key from instructor
referencing department

©Silberschatz, Korth and Sudarshan2.8Database System Concepts - 7th Edition

Keys (Cont.)

Employee (
EmployeeID,
FullName,
SSN,
DeptID

)

1. Candidate Key: are individual columns in a table that qualifies for uniqueness of all the rows. Here in
Employee table EmployeeID & SSN are Candidate keys.

2. Primary Key: is the columns you choose to maintain uniqueness in a table. Here in Employee table you can
choose either EmployeeID or SSN columns, EmployeeID is preferable choice, as SSN is a secure value.

3. Alternate Key: Candidate column other the Primary column, like if EmployeeID is PK then SSN would be
the Alternate key.

4. Super Key: If you add any other column/attribute to a Primary Key then it become a super key, like
EmployeeID + FullName is a Super Key.

5. Composite Key: If a table do have a single columns that qualifies for a Candidate key, then you have to
select 2 or more columns to make a row unique. Like if there is no EmployeeID or SSN columns, then you can
make FullName + DateOfBirth as Composite primary Key. But still there can be a narrow chance of duplicate
row.

6. Foreign Key

7. Compound Key

©Silberschatz, Korth and Sudarshan4.9Database System Concepts - 7th Edition

History

 IBM Sequel language developed as part of System R project at
the IBM San Jose Research Laboratory

 Renamed Structured Query Language (SQL)

 ANSI and ISO standard SQL:

• SQL-86

• SQL-89

• SQL-92

• SQL:1999 (language name became Y2K compliant!)

• SQL:2003

 Commercial systems offer most, if not all, SQL-92 features, plus
varying feature sets from later standards and special proprietary
features.

• Not all examples here may work on your particular system.

©Silberschatz, Korth and Sudarshan4.10Database System Concepts - 7th Edition

SQL Parts

 DML -- provides the ability to query information from the
database and to insert tuples into, delete tuples from, and
modify tuples in the database.

 integrity – the DDL includes commands for specifying
integrity constraints.

 View definition -- The DDL includes commands for defining
views.

 Transaction control –includes commands for specifying the
beginning and ending of transactions.

 Embedded SQL and dynamic SQL -- define how SQL
statements can be embedded within general-purpose
programming languages.

 Authorization – includes commands for specifying access
rights to relations and views.

©Silberschatz, Korth and Sudarshan4.11Database System Concepts - 7th Edition

Data Definition Language

 The schema for each relation.

 The type of values associated with each attribute.

 The Integrity constraints

 The set of indices to be maintained for each relation.

 Security and authorization information for each relation.

The SQL data-definition language (DDL) allows the specification
of information about relations, including:

©Silberschatz, Korth and Sudarshan4.12Database System Concepts - 7th Edition

Domain Types in SQL

 char(n). Fixed length character string, with user-specified length n.

 varchar(n). Variable length character strings, with user-specified
maximum length n.

 int. Integer (a finite subset of the integers that is machine-
dependent).

 smallint. Small integer (a machine-dependent subset of the
integer domain type).

 numeric(p,d). Fixed point number, with user-specified precision of
p digits, with d digits to the right of decimal point. (ex.,
numeric(3,1), allows 44.5 to be stores exactly, but not 444.5 or
0.32)

 real, double precision. Floating point and double-precision
floating point numbers, with machine-dependent precision.

 float(n). Floating point number, with user-specified precision of at
least n digits.

 More are covered in Chapter 4.

©Silberschatz, Korth and Sudarshan4.13Database System Concepts - 7th Edition

Create Table Construct

 An SQL relation is defined using the create table command:

create table r

(A1 D1, A2 D2, ..., An Dn,
(integrity-constraint1),

...,
(integrity-constraintk))

• r is the name of the relation

• each Ai is an attribute name in the schema of relation r

• Di is the data type of values in the domain of attribute Ai

 Example:

create table instructor (
ID char(5),
name varchar(20),
dept_name varchar(20),
salary numeric(8,2))

©Silberschatz, Korth and Sudarshan4.14Database System Concepts - 7th Edition

Integrity Constraints in Create Table

 Types of integrity constraints

• primary key (A1, ..., An)

• foreign key (Am, ..., An) references r

• not null

 SQL prevents any update to the database that violates an
integrity constraint.

 Example:

create table instructor (
ID char(5),
name varchar(20) not null,
dept_name varchar(20),
salary numeric(8,2),
primary key (ID),
foreign key (dept_name) references department);

©Silberschatz, Korth and Sudarshan4.15Database System Concepts - 7th Edition

And a Few More Relation Definitions

 create table student (
ID varchar(5),
name varchar(20) not null,
dept_name varchar(20),
tot_cred numeric(3,0),
primary key (ID),
foreign key (dept_name) references department);

 create table takes (
ID varchar(5),
course_id varchar(8),
sec_id varchar(8),
semester varchar(6),
year numeric(4,0),
grade varchar(2),
primary key (ID, course_id, sec_id, semester, year) ,
foreign key (ID) references student,
foreign key (course_id, sec_id, semester, year) references

section);

©Silberschatz, Korth and Sudarshan4.16Database System Concepts - 7th Edition

And more still

 create table course (
course_id varchar(8),
title varchar(50),
dept_name varchar(20),
credits numeric(2,0),
primary key (course_id),
foreign key (dept_name) references department);

©Silberschatz, Korth and Sudarshan4.17Database System Concepts - 7th Edition

Updates to tables

 Insert

• insert into instructor values (‘10211’, ’Smith’, ’Biology’, 66000);

 Delete

• Remove all tuples from the student relation

 delete from student

 Drop Table

• drop table r

 Alter

• alter table r add A D

 where A is the name of the attribute to be added to relation
r and D is the domain of A.

 All exiting tuples in the relation are assigned null as the
value for the new attribute.

• alter table r drop A

 where A is the name of an attribute of relation r

 Dropping of attributes not supported by many databases.

©Silberschatz, Korth and Sudarshan4.18Database System Concepts - 7th Edition

SQL

sqltutorial.org/sql-cheat-sheet

©Silberschatz, Korth and Sudarshan4.19Database System Concepts - 7th Edition

Basic Query Structure

 A typical SQL query has the form:

select A1, A2, ..., An

from r1, r2, ..., rm

where P

• Ai represents an attribute

• Ri represents a relation

• P is a predicate.

 Call this a SFW query.

 The result of an SQL query is a relation.

©Silberschatz, Korth and Sudarshan4.20Database System Concepts - 7th Edition

The select Clause
 The select clause lists the attributes desired in the result of a

query

• corresponds to the projection operation of the relational
algebra

 Example: find the names of all instructors:
select name
from instructor

 NOTE: SQL names are case insensitive (i.e., you may use
upper- or lower-case letters.)

• E.g., Name ≡ NAME ≡ name

• Some people use upper case wherever we use bold font.

 Values are not:
Different: ‘Seattle’, ‘seattle’

 Use single quotes for constants:
‘abc’ - yes
“abc” - no

©Silberschatz, Korth and Sudarshan4.21Database System Concepts - 7th Edition

The select Clause (Cont.)

 SQL allows duplicates in relations as well as in query
results.

 To force the elimination of duplicates, insert the keyword
distinct after select.

 Find the department names of all instructors, and remove
duplicates

select distinct dept_name
from instructor

 The keyword all specifies that duplicates should not be
removed.

select all dept_name
from instructor

©Silberschatz, Korth and Sudarshan4.22Database System Concepts - 7th Edition

The select Clause (Cont.)

 An asterisk in the select clause denotes “all attributes”

select *
from instructor

 An attribute can be a literal with from clause

select ‘A’
from instructor

• Result is a table with one column and N rows (number of
tuples in the instructors table), each row with value “A”

©Silberschatz, Korth and Sudarshan4.23Database System Concepts - 7th Edition

The select Clause (Cont.)

 The select clause can contain arithmetic expressions
involving the operation, +, –, , and /, and operating on
constants or attributes of tuples.

• The query:

select ID, name, salary/12
from instructor

would return a relation that is the same as the instructor
relation, except that the value of the attribute salary is
divided by 12.

• Can rename “salary/12” using the as clause:

select ID, name, salary/12 as monthly_salary

©Silberschatz, Korth and Sudarshan4.24Database System Concepts - 7th Edition

The where Clause

 The where clause specifies conditions that the result must
satisfy

• Corresponds to the selection predicate of the relational algebra.

 To find all instructors in Comp. Sci. dept

select name
from instructor
where dept_name = ‘Comp. Sci.'

 SQL allows the use of the logical connectives and, or, and not

 The operands of the logical connectives can be expressions
involving the comparison operators <, <=, >, >=, =, and <>.

 Comparisons can be applied to results of arithmetic expressions

 To find all instructors in Comp. Sci. dept with salary > 80000

select name
from instructor
where dept_name = ‘Comp. Sci.' and salary > 80000

©Silberschatz, Korth and Sudarshan4.25Database System Concepts - 7th Edition

The from Clause

 The from clause lists the relations involved in the query

• Corresponds to the Cartesian product operation of the
relational algebra.

 Find the Cartesian product instructor X teaches

select 
from instructor, teaches

• generates every possible instructor – teaches pair, with all
attributes from both relations.

• For common attributes (e.g., ID), the attributes in the resulting
table are renamed using the relation name (e.g.,
instructor.ID)

 Cartesian product not very useful directly, but useful combined
with where-clause condition (selection operation in relational
algebra).

©Silberschatz, Korth and Sudarshan4.26Database System Concepts - 7th Edition

Examples

 Find the names of all instructors who have taught some course and
the course_id

• select name, course_id
from instructor , teaches
where instructor.ID = teaches.ID

 Find the names of all instructors in the Art department who have
taught some course and the course_id

• select name, course_id
from instructor , teaches
where instructor.ID = teaches.ID and instructor. dept_name = ‘Art’

©Silberschatz, Korth and Sudarshan4.27Database System Concepts - 7th Edition

The Rename Operation

 The SQL allows renaming relations and attributes using the as
clause:

old-name as new-name

 Find the names of all instructors who have a higher salary than
some instructor in ‘Comp. Sci’.

• select distinct T.name
from instructor as T, instructor as S
where T.salary > S.salary and S.dept_name = ‘Comp. Sci.’

 Keyword as is optional and may be omitted
instructor as T ≡ instructor T

©Silberschatz, Korth and Sudarshan4.28Database System Concepts - 7th Edition

String Operations

 SQL includes a string-matching operator for comparisons on
character strings. The operator like uses patterns that are
described using two special characters:

• percent (%). The % character matches any substring.

• underscore (_). The _ character matches any single character.

 Find the names of all instructors whose name includes the substring
“dar”.

select name
from instructor
where name like '%dar%'

 Match the string “100%”

like ‘100 \%' escape '\'

in that above we use backslash (\) as the escape character.

©Silberschatz, Korth and Sudarshan4.29Database System Concepts - 7th Edition

String Operations (Cont.)

 Patterns are case sensitive.

 Pattern matching examples:

• ‘Intro%’ matches any string beginning with “Intro”.

• ‘%Comp%’ matches any string containing “Comp” as a substring.

• ‘_ _ _’ matches any string of exactly three characters.

• ‘_ _ _ %’ matches any string of at least three characters.

 SQL supports a variety of string operations such as

• concatenation (using “||”)

• converting from upper to lower case (and vice versa)

• finding string length, extracting substrings, etc.

©Silberschatz, Korth and Sudarshan4.30Database System Concepts - 7th Edition

©Silberschatz, Korth and Sudarshan4.31Database System Concepts - 7th Edition

Ordering the Display of Tuples

 List in alphabetic order the names of all instructors

select distinct name
from instructor
order by name

 We may specify desc for descending order or asc for ascending
order, for each attribute; ascending order is the default.

• Example: order by name desc

 Can sort on multiple attributes

• Example: order by dept_name, name

©Silberschatz, Korth and Sudarshan4.32Database System Concepts - 7th Edition

Where Clause Predicates

 SQL includes a between comparison operator

 Example: Find the names of all instructors with salary between
$90,000 and $100,000 (that is,  $90,000 and  $100,000)

• select name
from instructor
where salary between 90000 and 100000

 Tuple comparison

• select name, course_id
from instructor, teaches
where (instructor.ID, dept_name) = (teaches.ID, ’Biology’);

©Silberschatz, Korth and Sudarshan4.33Database System Concepts - 7th Edition

Set Operations

 Find courses that ran in Fall 2017 or in Spring 2018

• Find courses that ran in Fall 2017 but not in Spring 2018

(select course_id from section where sem = ‘Fall’ and year = 2017)
union

(select course_id from section where sem = ‘Spring’ and year = 2018)

• Find courses that ran in Fall 2017 and in Spring 2018

(select course_id from section where sem = ‘Fall’ and year = 2017)
intersect

(select course_id from section where sem = ‘Spring’ and year = 2018)

(select course_id from section where sem = ‘Fall’ and year = 2017)
except

(select course_id from section where sem = ‘Spring’ and year = 2018)

©Silberschatz, Korth and Sudarshan4.34Database System Concepts - 7th Edition

Set Operations (Cont.)

 Set operations union, intersect, and except

• Each of the above operations automatically
eliminates duplicates

 To retain all duplicates use the

• union all,

• intersect all

• except all.

©Silberschatz, Korth and Sudarshan4.35Database System Concepts - 7th Edition

Null Values

 It is possible for tuples to have a null value, denoted by null,
for some of their attributes

 null signifies an unknown value or that a value does not exist.

 The result of any arithmetic expression involving null is null

• Example: 5 + null returns null

 The predicate is null can be used to check for null values.

• Example: Find all instructors whose salary is null.

select name
from instructor
where salary is null

 The predicate is not null succeeds if the value on which it is
applied is not null.

©Silberschatz, Korth and Sudarshan4.36Database System Concepts - 7th Edition

Null Values (Cont.)

 SQL treats as unknown the result of any comparison involving
a null value (other than predicates is null and is not null).

• Example: 5 < null or null <> null or null = null

 The predicate in a where clause can involve Boolean
operations (and, or, not); thus the definitions of the Boolean
operations need to be extended to deal with the value
unknown.

• and : (true and unknown) = unknown,
(false and unknown) = false,
(unknown and unknown) = unknown

• or: (unknown or true) = true,
(unknown or false) = unknown
(unknown or unknown) = unknown

 Result of where clause predicate is treated as false if it
evaluates to unknown

©Silberschatz, Korth and Sudarshan4.37Database System Concepts - 7th Edition

Aggregate Functions

 These functions operate on the multiset of values of a
column of a relation, and return a value

avg: average value
min: minimum value
max: maximum value
sum: sum of values
count: number of values

 Produce numbers (not tables)

 Aggregates over multiple rows into one row

 Not part of relational algebra (but not hard to add)

©Silberschatz, Korth and Sudarshan4.38Database System Concepts - 7th Edition

Aggregate Functions Examples

 Find the average salary of instructors in the Computer Science
department

• select avg (salary)
from instructor
where dept_name= ’Comp. Sci.’;

 Find the total number of instructors who teach a course in the
Spring 2010 semester

• select count (distinct ID)
from teaches
where semester = ’Spring’ and year = 2018;

 Find the number of tuples in the course relation

• select count (*)
from course;

©Silberschatz, Korth and Sudarshan4.39Database System Concepts - 7th Edition

Aggregation

select COUNT(*)
from Product
where year > 1995

Except COUNT, all aggregations apply to a single attribute

Question: count(*) vs. count(price)?

select AVG(price)
from Product
where maker = “Toyota”

Product(PName, Price, Category, Year, Maker)

©Silberschatz, Korth and Sudarshan4.40Database System Concepts - 7th Edition

Aggregation: count

count applies to duplicates, unless otherwise stated

select COUNT(category)
from Product
where year > 1995

We probably want:

select COUNT(distinct category)
from Product
where year > 1995

Purchase(product, date, price, quantity)

©Silberschatz, Korth and Sudarshan4.41Database System Concepts - 7th Edition

More Examples

SELECT SUM(price * quantity)
FROM Purchase

SELECT SUM(price * quantity)
FROM Purchase
WHERE product = ‘bagel’

What do these mean?

Purchase(product, date, price, quantity)

©Silberschatz, Korth and Sudarshan4.42Database System Concepts - 7th Edition

Simple Aggregations

Purchase

Product Date Price Quantity

bagel 10/21 1 20

banana 10/3 0.5 10

banana 10/10 1 10

bagel 10/25 1.50 20

50 (= 1*20 + 1.50*20)
SELECT SUM(price * quantity)
FROM Purchase
WHERE product = ‘bagel’

©Silberschatz, Korth and Sudarshan4.43Database System Concepts - 7th Edition

Grouping and Aggregation

What GROUPings are possible?
- Type, Size, Color
- Number of holes
- Combination?

©Silberschatz, Korth and Sudarshan4.44Database System Concepts - 7th Edition

What GROUPings are possible?

Possible Groups
- Product? (e.g. SUM(quantity) by product) # product units sold

- Date? (e.g., SUM(price*quantity) by date) # daily sales

- Price?
- Product, Date?
- <various column combinations>

Purchase

Product Date Price Quantity

bagel 10/21 1 20

banana 10/3 0.5 10

banana 10/10 1 10

bagel 10/25 1.50 20

©Silberschatz, Korth and Sudarshan4.45Database System Concepts - 7th Edition

Aggregate Functions – Group By

 Find the average salary of instructors in each department

• select dept_name, avg (salary) as avg_salary
from instructor
group by dept_name;

©Silberschatz, Korth and Sudarshan4.46Database System Concepts - 7th Edition

Grouping and Aggregation

SELECT product, SUM(price * quantity) AS TotalSales
FROM Purchase
WHERE date > ‘10/1/2005’
GROUP BY product

Let’s see what this means…

Query: Find total sales after 10/1/2005 per product.

Purchase (product, date, price, quantity)

©Silberschatz, Korth and Sudarshan4.47Database System Concepts - 7th Edition

Grouping and Aggregation

1. Compute the FROM and WHERE clauses

2. Group by the attributes in the GROUP BY

3. Compute the SELECT clause: grouped attributes and aggregates

Semantics of the query:

SELECT product, SUM(price * quantity) AS TotalSales
FROM Purchase
WHERE date > ‘10/1/2005’
GROUP BY product

©Silberschatz, Korth and Sudarshan4.48Database System Concepts - 7th Edition

1. Compute the FROM and WHERE clauses

Product Date Price Quantity

Bagel 10/21 1 20

Bagel 10/25 1.50 20

Banana 10/3 0.5 10

Banana 10/10 1 10

FROM-WHERE

SELECT product, SUM(price * quantity) AS TotalSales
FROM Purchase
WHERE date > ‘10/1/2005’
GROUP BY product

©Silberschatz, Korth and Sudarshan4.49Database System Concepts - 7th Edition

2. Group by the attributes in the GROUP BY

Product Date Price Quantity

Bagel 10/21 1 20

Bagel 10/25 1.50 20

Banana 10/3 0.5 10

Banana 10/10 1 10

SELECT product, SUM(price*quantity) AS TotalSales
FROM Purchase
WHERE date > ‘10/1/2005’
GROUP BY product

GROUP BY
Product Date Price Quantity

Bagel
10/21 1 20

10/25 1.50 20

Banana
10/3 0.5 10

10/10 1 10

SELECT product, SUM(price * quantity) AS TotalSales
FROM Purchase
WHERE date > ‘10/1/2005’
GROUP BY product

©Silberschatz, Korth and Sudarshan4.50Database System Concepts - 7th Edition

3. Compute the SELECT clause: grouped attributes
and aggregates

Product TotalSales

Bagel 50

Banana 15

SELECT
Product Date Price Quantity

Bagel
10/21 1 20

10/25 1.50 20

Banana
10/3 0.5 10

10/10 1 10

SELECT product, SUM(price * quantity) AS TotalSales
FROM Purchase
WHERE date > ‘10/1/2005’
GROUP BY product

©Silberschatz, Korth and Sudarshan4.51Database System Concepts - 7th Edition

HAVING Clause

Same query as before,
except that we consider only
products that have more
than 100 buyers

HAVING clauses contains conditions on aggregates

SELECT product, SUM(price*quantity)
FROM Purchase
WHERE date > ‘10/1/2005’
GROUP BY product
HAVING SUM(quantity) > 100

Whereas WHERE clauses condition on individual tuples…

Purchase (product, date, price, quantity)

©Silberschatz, Korth and Sudarshan4.52Database System Concepts - 7th Edition

General form of Grouping and Aggregation

• S: Can ONLY contain attributes a1,…,ak and/or aggregates over other attributes
• C1: is any condition on the attributes in R1,…,Rn

• C2: is any condition on the aggregate expressions

SELECT S
FROM R1,…,Rn
WHERE C1
GROUP BY a1,…,ak
HAVING C2

©Silberschatz, Korth and Sudarshan4.53Database System Concepts - 7th Edition

Aggregation (Cont.)

 Attributes in select clause outside of aggregate functions must
appear in group by list

• /* erroneous query */
select dept_name, ID, avg (salary)
from instructor
group by dept_name;

• Error, Why?

©Silberschatz, Korth and Sudarshan4.54Database System Concepts - 7th Edition

General form of Grouping and Aggregation

Evaluation steps:

1. Evaluate FROM-WHERE: apply condition C1 on the attributes in R1,…,Rn

2. GROUP BY the attributes a1,…,ak

3. HAVING: Apply condition C2 to each group (may need to compute aggregates)

4. SELECT: Compute aggregates in S and return the result

SELECT S
FROM R1,…,Rn
WHERE C1
GROUP BY a1,…,ak
HAVING C2

©Silberschatz, Korth and Sudarshan4.55Database System Concepts - 7th Edition

Example

 Find the names and average salaries of all departments whose
average salary is greater than 42000

Note: predicates in the having clause are applied after the
formation of groups whereas predicates in the where
clause are applied before forming groups

select dept_name, avg (salary) as avg_salary
from instructor
group by dept_name
having avg (salary) > 42000;

56

Aggregates

• Functions that operate on sets:
– COUNT, SUM, AVG, MAX, MIN

• Produce numbers (not tables)
• Aggregates over multiple rows into one row
• Not part of relational algebra (but not hard to add)

SELECT COUNT(*)
FROM Professor P

SELECT MAX (Salary)
FROM Employee E

©Silberschatz, Korth and Sudarshan4.57Database System Concepts - 7th Edition

57

Aggregates: Proper and
Improper Usage

SELECT COUNT (T.CrsCode), T. ProfId
– makes no sense (in the absence of

GROUP BY clause)

SELECT COUNT (*), AVG (T.Grade)
– but this is OK

WHERE T.Grade > COUNT (SELECT ….)
– aggregate cannot be applied to result

of SELECT statement

©Silberschatz, Korth and Sudarshan4.58Database System Concepts - 7th Edition

58

Common Mistake

SELECT …
FROM Course
WHERE COUNT (crscode) > 5

• No aggregation allowed in the WHERE clause unless the aggregation is
inside another nested SELECT statement.

• WHERE for selecting rows, nothing to aggregate in one row

©Silberschatz, Korth and Sudarshan4.59Database System Concepts - 7th Edition

Null Values and Aggregates

 Total all salaries

select sum (salary)
from instructor

• Above statement ignores null amounts

• Result is null if there is no non-null amount

 All aggregate operations except count(*) ignore tuples with null
values on the aggregated attributes

 What if collection has only null values?

• count returns 0

• all other aggregates return null

©Silberschatz, Korth and Sudarshan4.60Database System Concepts - 7th Edition

Nested Subqueries

 SQL provides a mechanism for the nesting of subqueries. A
subquery is a select-from-where expression that is nested within
another query.

 The nesting can be done in the following SQL query

select A1, A2, ..., An

from r1, r2, ..., rm

where P

as follows:

• From clause: ri can be replaced by any valid subquery

• Where clause: P can be replaced with an expression of the form:

B <operation> (subquery)

Where B is an attribute and <operation> to be defined later.

• Select clause:

Ai can be replaced be a subquery that generates a single value.

©Silberschatz, Korth and Sudarshan4.61Database System Concepts - 7th Edition

Set Membership

©Silberschatz, Korth and Sudarshan4.62Database System Concepts - 7th Edition

Set Membership

 Find courses offered in Fall 2017 and in Spring 2018

 Find courses offered in Fall 2017 but not in Spring 2018

select distinct course_id
from section
where semester = ’Fall’ and year= 2017 and

course_id in (select course_id
from section
where semester = ’Spring’ and year= 2018);

select distinct course_id
from section
where semester = ’Fall’ and year= 2017 and

course_id not in (select course_id
from section
where semester = ’Spring’ and year= 2018);

©Silberschatz, Korth and Sudarshan4.63Database System Concepts - 7th Edition

Set Membership (Cont.)

 Name all instructors whose name is neither “Mozart” nor Einstein”

select distinct name
from instructor
where name not in (‘Mozart’, ‘Einstein’)

 Find the total number of (distinct) students who have taken course
sections taught by the instructor with ID 10101

 Note: Above query can be written in a much simpler manner.
The formulation above is simply to illustrate SQL features

select count (distinct ID)
from takes
where (course_id, sec_id, semester, year) in

(select course_id, sec_id, semester, year
from teaches
where teaches.ID= 10101);

©Silberschatz, Korth and Sudarshan4.64Database System Concepts - 7th Edition

Subqueries in the From Clause

©Silberschatz, Korth and Sudarshan4.65Database System Concepts - 7th Edition

Subqueries in the Form Clause

 SQL allows a subquery expression to be used in the from clause

 Find the average instructors’ salaries of those departments where
the average salary is greater than $42,000.”

select dept_name, avg_salary
from (select dept_name, avg (salary) as avg_salary

from instructor
group by dept_name)

where avg_salary > 42000;

 Note that we do not need to use the having clause

 Another way to write above query

select dept_name, avg_salary
from (select dept_name, avg (salary)

from instructor
group by dept_name)
as dept_avg (dept_name, avg_salary)

where avg_salary > 42000;

©Silberschatz, Korth and Sudarshan4.66Database System Concepts - 7th Edition

Modification of the Database

 Deletion of tuples from a given relation.

 Insertion of new tuples into a given relation

 Updating of values in some tuples in a given relation

©Silberschatz, Korth and Sudarshan4.67Database System Concepts - 7th Edition

Deletion

 Delete all instructors

delete from instructor

 Delete all instructors from the Finance department
delete from instructor
where dept_name= ’Finance’;

 Delete all tuples in the instructor relation for those instructors
associated with a department located in the Watson building.

delete from instructor
where dept name in (select dept name

from department
where building = ’Watson’);

©Silberschatz, Korth and Sudarshan4.68Database System Concepts - 7th Edition

Deletion (Cont.)

 Delete all instructors whose salary is less than the average salary
of instructors

delete from instructor
where salary < (select avg (salary)

from instructor);

 Problem: as we delete tuples from deposit, the average salary
changes

 Solution used in SQL:

1. First, compute avg (salary) and find all tuples to delete

2. Next, delete all tuples found above (without

recomputing avg or retesting the tuples)

©Silberschatz, Korth and Sudarshan4.69Database System Concepts - 7th Edition

Insertion

 Add a new tuple to course

insert into course
values (’CS-437’, ’Database Systems’, ’Comp. Sci.’, 4);

 or equivalently

insert into course (course_id, title, dept_name, credits)
values (’CS-437’, ’Database Systems’, ’Comp. Sci.’, 4);

 Add a new tuple to student with tot_creds set to null

insert into student
values (’3003’, ’Green’, ’Finance’, null);

©Silberschatz, Korth and Sudarshan4.70Database System Concepts - 7th Edition

Insertion (Cont.)

 Make each student in the Music department who has earned more
than 144 credit hours an instructor in the Music department with a
salary of $18,000.

insert into instructor
select ID, name, dept_name, 18000
from student
where dept_name = ‘Music’ and total_cred > 144;

 The select from where statement is evaluated fully before any of its
results are inserted into the relation.

Otherwise queries like

insert into table1 select * from table1

would cause problem

©Silberschatz, Korth and Sudarshan4.71Database System Concepts - 7th Edition

Updates

 Give a 5% salary raise to all instructors

update instructor
set salary = salary * 1.05

 Give a 5% salary raise to those instructors who Eran
less than 70000

update instructor
set salary = salary * 1.05
where salary < 70000;

 Give a 5% salary raise to instructors whose salary is
less than average

update instructor
set salary = salary * 1.05
where salary < (select avg (salary)

from instructor);

©Silberschatz, Korth and Sudarshan4.72Database System Concepts - 7th Edition

Updates (Cont.)

 Increase salaries of instructors whose salary is over $100,000 by
3%, and all others by a 5%

• Write two update statements:

update instructor
set salary = salary * 1.03
where salary > 100000;
update instructor
set salary = salary * 1.05
where salary <= 100000;

• The order is important

• Can be done better using the case statement (next slide)

©Silberschatz, Korth and Sudarshan4.73Database System Concepts - 7th Edition

Case Statement for Conditional Updates

 Same query as before but with case statement

update instructor
set salary = case

when salary <= 100000 then salary * 1.05
else salary * 1.03

end

©Silberschatz, Korth and Sudarshan4.74Database System Concepts - 7th Edition

Updates with Scalar Subqueries

 Recompute and update tot_creds value for all students

update student S
set tot_cred = (select sum(credits)

from takes, course
where takes.course_id = course.course_id and

S.ID= takes.ID.and
takes.grade <> ’F’ and
takes.grade is not null);

 Sets tot_creds to null for students who have not taken any course

 Instead of sum(credits), use:

case
when sum(credits) is not null then sum(credits)
else 0

end

©Silberschatz, Korth and Sudarshan4.75Database System Concepts - 7th Edition

SQL

sqltutorial.org/sql-cheat-sheet

©Silberschatz, Korth and Sudarshan4.76Database System Concepts - 7th Edition

End of Chapter 3

