Chapter 3: Introduction to SQL

Database System Concepts, 7t Ed.

©Silberschatz, Korth and Sudarshan
See for conditions on re-use



Outline

= Qverview of The SQL Query Language
=  SQL Data Definition

= Basic Query Structure of SQL Queries
= Additional Basic Operations

= Set Operations

= Null Values

= Aggregate Functions

= Nested Subqueries

= Modification of the Database

Database System Concepts - 7t Edition 4.2 ©Silberschatz, Korth and Sudarshan



%(or columns)

ID name dept_name salary
10101 | Srinivasan | Comp. Sci. | 65000
12121 | Wu Finance 90000
15151 | Mozart Music 40000
22222 | Einstein Physics 95000
32343 | El Said History 60000
33456 | Gold Physics 87000
45565 | Katz Comp. Sci. | 75000
58583 | Califieri History 62000
76543 | Singh Finance 80000
76766 | Crick Biology 72000
83821 | Brandt Comp. Sci. 92000
98345 | Kim Elec. Eng. 80000

Database System Concepts - 7t Edition

2.3

7

©Silberschatz, Korth and Sudarshan

Example of a Instructor Relation

attributes

tuples
or rows)



Attribute

= The set of allowed values for each attribute is called the
domain of the attribute

= Attribute values are (normally) required to be atomic; that is,
indivisible

= The special value null is a member of every domain.
Indicated that the value is “unknown”

= The null value causes complications in the definition of many
operations

Database System Concepts - 7t Edition 2.4 ©Silberschatz, Korth and Sudarshan



Relations are Unordered

= Order of tuples is irrelevant (tuples may be stored in an arbitrary

order)

=  Example: instructor relation with unordered tuples

16 name dept_name salary
22222 | Einstein Physics 95000
12121 | Wu Finance 90000
32343 | El Said History 60000
45565 | Katz Comp. Sci. 75000
98345 | Kim Elec. Eng. 80000
76766 | Crick Biology 72000
10101 | Srinivasan | Comp. Sci. 65000
58583 | Califieri History 62000
83821 | Brandt Comp. Sci. 92000
15151 | Mozart Music 40000
33456 | Gold Physics 87000
76543 | Singh Finance 80000

Database System Concepts - 7t Edition

2.5

©Silberschatz, Korth and Sudarshan



Database Schema

= Database schema -- is the logical structure of the database.

= Database instance -- is a snapshot of the data in the
database at a given instant in time.

= Example:
schema:
Instance:

Database System Concepts - 7t Edition

instructor (ID, name, dept_name, salary)

ID name dept_name salary
22222 | Einstein Physics 95000
12121 | Wu Finance 90000
32343 | El Said History 60000
45565 | Katz Comp. Sci. 75000
98345 | Kim Elec. Eng. 80000
76766 | Crick Biology 72000
10101 | Srinivasan | Comp. Sci. | 65000
58583 | Califieri History 62000
83821 | Brandt Comp. Sci. 92000
15151 | Mozart Music 40000
33456 | Gold Physics 87000
76543 | Singh Finance 80000

2.6

©Silberschatz, Korth and Sudarshan



Keys

= letKcR

= Kis a superkey of R if values for K are sufficient to identify a unique
tuple of each possible relation r(R)

Example: {ID} and {ID,name} are both superkeys of instructor.

= Superkey K is a candidate key if K is minimal
Example: {ID}is a candidate key for Instructor

= One of the candidate keys is selected to be the primary key.
which one?

= Foreign key constraint: Value in one relation must appear in another
Referencing relation
Referenced relation

Example — dept_name in instructor is a foreign key from instructor
referencing department

Database System Concepts - 7t Edition 2.7 ©Silberschatz, Korth and Sudarshan



Keys (Cont.)

Employee (
EmployeelD,
FullName,
SSN,

DeptiD

)

1. Candidate Key: are individual columns in a table that qualifies for uniqueness of all the rows. Here in
Employee table EmployeelD & SSN are Candidate keys.

2. Primary Key: is the columns you choose to maintain uniqueness in a table. Here in Employee table you can
choose either EmployeelD or SSN columns, EmployeelD is preferable choice, as SSN is a secure value.

3. Alternate Key: Candidate column other the Primary column, like if EmployeelD is PK then SSN would be
the Alternate key.

4. Super Key: If you add any other column/attribute to a Primary Key then it become a super key, like
EmployeelD + FullName is a Super Key.

5. Composite Key: If a table do have a single columns that qualifies for a Candidate key, then you have to
select 2 or more columns to make a row unique. Like if there is no EmployeelD or SSN columns, then you can
make FullName + DateOfBirth as Composite primary Key. But still there can be a narrow chance of duplicate
row.

6. Foreign Key
7. Compound Key

Database System Concepts - 7t Edition 2.8 ©Silberschatz, Korth and Sudarshan



History

= |BM Sequel language developed as part of System R project at
the IBM San Jose Research Laboratory

= Renamed Structured Query Language (SQL)
= ANSI and ISO standard SQL.:
SQL-86
SQL-89
SQL-92
SQL:1999 (language name became Y2K compliant!)
SQL:2003

= Commercial systems offer most, if not all, SQL-92 features, plus
varying feature sets from later standards and special proprietary
features.

Not all examples here may work on your particular system.

Database System Concepts - 7t Edition 4.9 ©Silberschatz, Korth and Sudarshan



SQL Parts

= DML -- provides the ability to query information from the
database and to insert tuples into, delete tuples from, and
modify tuples in the database.

= integrity — the DDL includes commands for specifying
integrity constraints.

= View definition -- The DDL includes commands for defining
Views.

= Transaction control —includes commands for specifying the
beginning and ending of transactions.

= Embedded SQL and dynamic SQL -- define how SQL
statements can be embedded within general-purpose
programming languages.

= Authorization — includes commands for specifying access
rights to relations and views.

Database System Concepts - 7t Edition 410 ©Silberschatz, Korth and Sudarshan



Data Definition Language

The SQL data-definition language (DDL) allows the specification
of information about relations, including:

= The schema for each relation.

= The type of values associated with each attribute.

= The Integrity constraints

= The set of indices to be maintained for each relation.

=  Security and authorization information for each relation.

Database System Concepts - 7t Edition 4.1 ©Silberschatz, Korth and Sudarshan



Domain Types in SQL

char(n). Fixed length character string, with user-specified length n.

varchar(n). Variable length character strings, with user-specified
maximum length n.

int. Integer (a finite subset of the integers that is machine-
dependent).

smallint. Small integer (a machine-dependent subset of the
integer domain type).

numeric(p,d). Fixed point number, with user-specified precision of
p digits, with d digits to the right of decimal point. (ex.,
numeric(3,1), allows 44.5 to be stores exactly, but not 444.5 or
0.32)

real, double precision. Floating point and double-precision
floating point numbers, with machine-dependent precision.

float(n). Floating point number, with user-specified precision of at
least n digits.

More are covered in Chapter 4.

Database System Concepts - 7t Edition 412 ©Silberschatz, Korth and Sudarshan



Create Table Construct

= An SQL relation is defined using the create table command:

create table r
(Ay Dy, A, Dy, ..., A, D,
(integrity-constraint,),

(integrity-constraint,))
ris the name of the relation
each A, is an attribute name in the schema of relation r
D, is the data type of values in the domain of attribute A,

= Example:

create table instructor (
ID char(5),
name varchar(20),
dept_name varchar(20),
salary numeric(8,2))

Database System Concepts - 7t Edition 413 ©Silberschatz, Korth and Sudarshan



Integrity Constraints in Create Table

Types of integrity constraints
primary key (A,, ..., A,)
foreign key (A, ..., A, ) references r

not null

= SQL prevents any update to the database that violates an
integrity constraint.

= Example:

create table instructor (
ID char(5),
name varchar(20) not null,
dept_name varchar(20),
salary numeric(8,2),
primary key (/D),
foreign key (dept _name) references department),

Database System Concepts - 7t Edition 414 ©Silberschatz, Korth and Sudarshan



And a Few More Relation Definitions

= create table student (

ID varchar(5),

name varchar(20) not null,
dept_ name  varchar(20),

tot _cred numeric(3,0),

primary key (ID),
foreign key (dept_name) references department);

= create table fakes (

ID varchar(5),
course _id varchar(8),
sec id varchar(8),
semester varchar(6),
year numeric(4,0),
grade varchar(2),

primary key (/ID, course id, sec id, semester, year) ,

foreign key (/D) references student,

foreign key (course id, sec id, semester, year) references
section);

Database System Concepts - 7t Edition 4.15 ©Silberschatz, Korth and Sudarshan



And more still

= create table course (
course_id varchar(8),

title varchar(50),
dept name  varchar(20),
credits numeric(2,0),

primary key (course_id),
foreign key (dept _name) references department);

Database System Concepts - 7t Edition 4.16 ©Silberschatz, Korth and Sudarshan



Updates to tables

= |nsert
insert into instructor values (‘10211’, 'Smith’, 'Biology’, 66000);
= Delete

Remove all tuples from the student relation
delete from student

= Drop Table
drop table r
= Alter

alter table radd A D

where A is the name of the attribute to be added to relation
r and D is the domain of A.

All exiting tuples in the relation are assigned null as the
value for the new attribute.

alter table rdrop A

where A is the name of an attribute of relation r
Dropping of attributes not supported by many databases.

Database System Concepts - 7t Edition 417 ©Silberschatz, Korth and Sudarshan



QUERYING DATA FROM A TABLE

SELECT cl, c2 FROM ¢;
Query data in columns c1, ¢2 from a table

SELECT * FROM ¢t;
Query all rows and columns from a table

SELECT cl, ¢2 FROM t
WHERE condition;
Query data and filter rows with a condition

SELECT DISTINCT ¢1 FROM t
WHERE condition;
Query distinct rows from a table

SELECT c1, <2 FROM t

ORDER BY ¢l ASC [DESC);

Sort the result set in ascending or descending
order

SELECT ¢, 2 FROM t

ORDER BY a

LIMIT n OFFSET offset;

Skip offset of rows and return the next n rows

SELECT cl, aggregate(c2)

FROM t

GROUP BY cl;

Group rows using an aggregate function

SELECT cl, aggregate(c2)

FROM t

GROUP BY c1

HAVING condition;

Filter groups using HAVING clause

Database System Concepts - 7t Edition

SQL

SQL CHEAT SHEET http://www.sqltutorial.org

QUERYING FROM MULTIPLE TABLES

SELECT 1, c2

FROM 11

INNER JOIN t2 ON condition;
Inner join tl and 2

SELECT 1, c2

FROM t1

LEFT JOIN t2 ON condition;
Left join t1 and 1l

SELECT cl, c2

FROM t1

RIGHT JOIN t2 ON condition;
Right join 11 and 2

SELECT cl, 2

FROM t1

FULL OUTER JOIN t2 ON condition;
Perform full outer join

SELECT cl, 2
FROM t1

CROSS JOIN t2;

Produce a Cartesian product of rows in tables

SELECT &, c2
FROM 11, 2
Another way to perform cross join

SELECT c1, c2

FROM t1 A

INNER JOIN t2 B ON condition;

Join 1l to itself using INNER JOIN clause

sqltutorial.org/sgl-cheat-sheet

4.18

USING SQL OPERATORS

SELECT cl, ¢2 FROM 11
UNION [ALL]

SELECT 1, ¢2 FROM 12,
Combine rows from two gqueries

SELECT ¢l, 2 FROM 11

INTERSECT

SELECT cl, c2 FROM t2;

Return the intersection of two queries

SELECT 1, <2 FROM 11

MINUS

SELECT €1, ¢2 FROM t2;

Subtract a result set from another result set

SELECT cl, c2 FROM 11
WHERE c1 [NOT] LIKE pattern;
Query rows using pattern matching %, _

SELECT c1, c2 FROM t
WHERE ¢l [NOT] IN value_list;
Query rows in a list

SELECT c1, ¢c2 FROM t
WHERE ¢1 BETWEEN low AND high;
Query rows between two values

SELECT c1, c2 FROM t
WHERE <1 1S [NOT] NULL;
Check If values in a table is NULL or not

©Silberschatz, Korth and Sudarshan



= A typical SQL query has the form:

select A, A,, ..., A,
fromr,r, .. r,
where P

A, represents an attribute
R;represents a relation
P is a predicate.

= Call this a SFW query.

= The result of an SQL query is a relation.

Database System Concepts - 7t Edition 419

Basic Query Structure

©Silberschatz, Korth and Sudarshan



The select Clause

= The select clause lists the attributes desired in the result of a
query

corresponds to the projection operation of the relational
algebra

= Example: find the names of all instructors:
select name
from instructor

= NOTE: SQL names are case insensitive (i.e., you may use
upper- or lower-case letters.)

E.g., Name = NAME = name

Some people use upper case wherever we use bold font.

®  Values are not:
Different: ‘Seattle’, ‘seattle’

®  Use single quotes for constants:
‘abc’ - yes
“abc” - no

Database System Concepts - 7t Edition 4.20 ©Silberschatz, Korth and Sudarshan



The select Clause (Cont.)

= SQL allows duplicates in relations as well as in query
results.

= To force the elimination of duplicates, insert the keyword
distinct after select.

= Find the department names of all instructors, and remove
duplicates

select distinct dept _name
from instructor

= The keyword all specifies that duplicates should not be
removed.

select all dept name
from instructor

Database System Concepts - 7t Edition 4.21 ©Silberschatz, Korth and Sudarshan



The select Clause (Cont.)

= An asterisk in the select clause denotes “all attributes”

select *
from instructor

= An attribute can be a literal with from clause

select ‘A’
from instructor

Result is a table with one column and N rows (number of
tuples in the instructors table), each row with value “A”

Database System Concepts - 7t Edition 4.22 ©Silberschatz, Korth and Sudarshan



The select Clause (Cont.)

= The select clause can contain arithmetic expressions
involving the operation, +, —, *, and /, and operating on
constants or attributes of tuples.

The query:

select /D, name, salary/12
from instructor

would return a relation that is the same as the instructor

relation, except that the value of the attribute salary is
divided by 12.

Can rename “salary/12” using the as clause:

select ID, name, salary/12 as monthly salary

Database System Concepts - 7t Edition 4.23 ©Silberschatz, Korth and Sudarshan



The where Clause

= The where clause specifies conditions that the result must
satisfy

Corresponds to the selection predicate of the relational algebra.
= To find all instructors in Comp. Sci. dept

select name
from instructor
where dept name = ‘Comp. Sci.'

= SQL allows the use of the logical connectives and, or, and not

= The operands of the logical connectives can be expressions
involving the comparison operators <, <=, >, >= = and <>,

=  Comparisons can be applied to results of arithmetic expressions

= To find all instructors in Comp. Sci. dept with salary > 80000

select name
from instructor
where dept_name = Comp. Sci.' and salary > 80000

Database System Concepts - 7t Edition 4.24 ©Silberschatz, Korth and Sudarshan



The from Clause

= The from clause lists the relations involved in the query

Corresponds to the Cartesian product operation of the
relational algebra.

= Find the Cartesian product instructor X teaches

select *
from instructor, teaches

generates every possible instructor — teaches pair, with all
attributes from both relations.

For common attributes (e.g., ID), the attributes in the resulting
table are renamed using the relation name (e.g.,
instructor.ID)

= Cartesian product not very useful directly, but useful combined
with where-clause condition (selection operation in relational
algebra).

Database System Concepts - 7t Edition 4.25 ©Silberschatz, Korth and Sudarshan



Examples

= Find the names of all instructors who have taught some course and
the course id
select name, course id

from instructor , teaches
where instructor.ID = teaches.ID

= Find the names of all instructors in the Art department who have
taught some course and the course _id

select name, course id
from instructor , teaches
where instructor.ID = teaches.ID and instructor. dept _name = ‘Art

)

Database System Concepts - 7t Edition 4.26 ©Silberschatz, Korth and Sudarshan



The Rename Operation

= The SQL allows renaming relations and attributes using the as
clause:

old-name as new-name

= Find the names of all instructors who have a higher salary than
some instructor in ‘Comp. Sci'.

select distinct T.name
from instructor as T, instructor as S
where T.salary > S.salary and S.dept_name = ‘Comp. Sci.’

= Keyword as is optional and may be omitted
instructor as T = instructor T

Database System Concepts - 7t Edition 4.27 ©Silberschatz, Korth and Sudarshan



String Operations

SQL includes a string-matching operator for comparisons on
character strings. The operator like uses patterns that are
described using two special characters:

percent ( % ). The % character matches any substring.
underscore ( _ ). The _ character matches any single character.

Find the names of all instructors whose name includes the substring
“dar”.

select name
from instructor
where name like '%dar%'

Match the string “100%”
like ‘100 \%' escape '\
in that above we use backslash (\) as the escape character.

Database System Concepts - 7t Edition 4.28 ©Silberschatz, Korth and Sudarshan



String Operations (Cont.)

= Patterns are case sensitive.
= Pattern matching examples:
‘Intro%’ matches any string beginning with “Intro”.
‘%Comp%’ matches any string containing “Comp” as a substring.

1

__"matches any string of exactly three characters.

1

__ %’ matches any string of at least three characters.

= SQL supports a variety of string operations such as
concatenation (using “||”)
converting from upper to lower case (and vice versa)
finding string length, extracting substrings, etc.

Database System Concepts - 7t Edition 4.29 ©Silberschatz, Korth and Sudarshan



MySQL CHEAT SHEET:

MEASUREMENT

Retum a string containing binary representation of a
number

BIN (12) = "11@9°
Retum length of argument in bits
BIT_LENGTH ('MySgl') = 48

Retumn b
CHAR_LENGTH ('MySgl') = 5
CHARACTER_LENGTH ('MySgl') = 5

of chi ters in & +

Retum the length of & string in bytes
LENGTH ('0') = 2

LENGTH ('A') = 1
OCTET_LENGTH ('0') = 2
OCTET_LENGTH ('X') = 1

Retumn a soundex string
SOUNDEX ("MySgl') = ‘M248°
SOUNDEX ('MySglDatabase') = "M24312°
Compare two strings
STRCMP (*A', 'A') =@
STRCMP (*A', 'B!) = =1
STRCMP (*B*, 'A') = 1

SEARCH
Retum the index of the first occumence of substring

INSTR ("MySgl', 'Sql') = 3
INSTR ('Sgl’, 'MySql') = @

Retumn the position of the first occumence of substring

LOCATE ("Sql’, 3
LOCATE (*xSql', 'MySgl’)
LOCATE ('Sgl', 'MySglsgql', 5) = 6
POSITION("Sgql’ IN ‘MySqlSgl’) = 3

'MySqlsgl') =
=@
5

Psattern matching using regular expresszions
*abc® RLIKE "[a-z]+' =1
"123° RLIKE ‘[a-z]+' =8
Return a substring from & string before the specified
number of cccurences of the delimiter

SUBSTRING_INDEX ('A:B:iC',
SUBSTRING_INDEX ('A:B:C', :
SUBSTRING_INDEX ('A:B:C', ':', -2) = 'B:C'

VETSYY =R

Database System Concepts - 7t Edition

CONVERSION

Retum numeric value of left-most character

ASCIT ("2') = 5@
ASCII (2) = 58
ASCIT (*dx') = 180

Retumn the character for each number passed

CHAR (77.3,121,83,81, '76, 81.6') = 'MySQL'
CHAR (45%256+45) = CHAR (45,45) = '--°
CHARSET(CHAR (X'65' USING UtfB)) = 'utfa’

Decode to / from a base-&4 string

TO_BASEG4 (‘abc') = 'YWIJ'
FROM BASEG4 ('YWIj') = 'abc’

Convert string or number to its hexadecimal reprezentation

X'616263" = 'abc’
HEX ('abc') = 616263
HEX(255) = "FF!
COMV(HEX(255), 16, 18) - 255

Convert each pair of hexadecimal digits to & character

UNHEX (°4D7953514C') = 'MysSQL’
UNHEX: (°"GG') = NULL
UNHEX (HEX ('abc’')) = 'abc’

Return the argument in lowerc ase

LOWER (*MYSQOL') = ‘mysgl’
LCASE (*MYSOL') = ‘mysql’

Load the named file
SET blob_col=LOAD_FILE ('/tmp/picture’)
Return a string containing octal representation of a number
DET (12) = "14”

Retum character code for leftmost character of the
argument

ORD (*2%) =58
Escape the argument for use in an SOL statement
QUOTE ("Doni*tl') = 'Don\‘'t!’
QUOTE (NULL) = 'NULL®
Convert to uppercase

UPPER (“mysgl’') = 'MYSQL
UCASE ('mysgl') = 'MYSQL'

MODIFICATION
Refum concatenated string

CONCAT ("My", 'S', "QL') = 'MysQL’
CONCAT ("My", NULL, ‘QL'} = NULL
CONCAT (14.3) = '14.3°

Return conc atenate with separator
CONCAT W5 (',', 'My', 'Sql') = 'My,S5ql’
CONCAT W5 (,",'My ' NULL,'Sgl') = 'My,Sgl’

Retum a number formatted to specified number of decimal
places

FORMAT (12332.123456, 4) = 12,332.1235
FORMAT (12332.1, 4) = 12,332.1608
FORMAT (12332.2, 8) = 12332.2

FORMAT (12332.2, 2, 'de_DE') = 12.332,20

Insert a substring at the specified position up to the
specified number of characters

INSERT (12345, 3, 2, 'ABC') = '12ABCS’
INSERT (12345, 1@, 2, 'ABC') = ‘12345’
INSERT (12345, 3, 1@, 'ABC') = '12ABC’

Retum the leftmost number of characters as specified
LEFT (*MySgl’, 2) = "My*
Return the string argument, left-padded with the specified
string

LPAD (*5g1%; 2; ':4)') = ™sg*
LPAD ('Sgl', 4, [:)') = ':iSql’
LPAD ("Sgl'y 75 '=)') = ':):)sal’
Remove leading spaces
LTRIM (* MysSgl') = "MySgl'
Repeat a string the specified number of times
REPEAT ('MySQL‘, 3) = 'MySQLMySQLMySQL'
Replace occurrences of a specified string
REPLACE ('NoSgl'y 'No', 'My') = "MySgl’
Reverse the characters in a string
REVERSE {'MySgl') = '1qSyM’
Return the specified rightmaost number of characters
RIGHT ("MySql', 3) = 'Sgl’

Returns the string argument, right-padded with the
specified strin.
RPAD (*Sgl', 2, [:})') = 'Sg'
RPAD ('Sgl'; 4, ':)') = 'Sql:'
RPAD ('sSgl’, 7, *:)') = 'Sgl:):)’

4.30

Remove trailing spaces

RTRIM ('MySql ') = 'MySql’

Returmn & string of the specified number of spaces
SPACE ("6*) = * !
Retumn the substring as specified

SUBSTRING=SUBSTR=MID( 'MySql®,3) = 'Sgl’
SUBSTRING=SUBSTR=MID( 'MySql’ FROM 4} = 'gl’
SUBSTRING=SUBSTR=MID{ 'MySql’,3,1) = '5'
SUBSTRING=SUBSTR=MID( 'MySql’,-3) = 'Sgl’
SUBSTRING=SUBSTR=MID{ 'MySql® FROM -4 FOR 2)
= ys

Remove leading and trailing spaces

TRIM(* MySgl ') = 'MySgl®

TRIM(LEADING 'x' FROM 'xxxSglMy') = 'MySgl'
TRIM(BOTH ‘My' FROM 'MySglMy') = 'Sql’
TRIM(TRAILING "Sgl' FROM 'MySql') = My’

Retum string at index number
ELT (1, ‘ej', "Heja', ‘hej', ‘foo') = 'ej’
ELT (4, 'ej', "Heja', 'hej', 'foo') = 'foo'

Retumn a string guch that for every bit set in the value bits,
you gef an on string and for every unset bit, you get an off
string

EXPORT_SET (5,°W','N',',"',4) = "Y,N,Y,N'
EXPORT_SET (6,'1','®',',',6) = '8,1,1,0,0,8'

Retum the index {position) of the firzt argument in the
=zubsequent arguments

FIELD ('ej®,'Hi','ej', 'Heja*; 'hej', 'oo')

FIELD ('fo",'Hj';'ed’; 'Heda"; 'hej’;'o0') =

[
@ ha

Retum the index position of the first argument within the
second argument

FIND_IN_SET ('b', '&;b,c,d') = 2
FIND_IN_SET (‘z', ‘a,b,c,d') = @
FIND_IN_SET ('a,', ‘a,b,c,d') = @

Retumn a set of comma-separated strings that have the
comesponding bit in bits set

MAKE_SET- (1,8, "h';%) = 'a’

MAKE_SET (1]4,%ab",'cd’,’ef’) = 'ab,ef’

MAKE_SET (1]4,%ab','cd’ ,NULL, 'ef') = ‘ah’

MAKE_SET (@,'a*,'b','¢') = "

©Silberschatz, Korth and Sudarshan



Ordering the Display of Tuples

= List in alphabetic order the names of all instructors

select distinct name
from instructor
order by name

= We may specify desc for descending order or asc for ascending
order, for each attribute; ascending order is the default.

Example: order by name desc
= Can sort on multiple attributes
Example: order by dept name, name

Database System Concepts - 7t Edition 4.31 ©Silberschatz, Korth and Sudarshan



Where Clause Predicates

= SQL includes a between comparison operator

= Example: Find the names of all instructors with salary between
$90,000 and $100,000 (that is, > $90,000 and < $100,000)

select name
from instructor
where salary between 90000 and 100000

= Tuple comparison

select name, course id
from instructor, teaches
where (instructor.ID, dept _name) = (teaches.ID, 'Biology’);

Database System Concepts - 7t Edition 4.32 ©Silberschatz, Korth and Sudarshan



Set Operations

= Find courses that ran in Fall 2017 or in Spring 2018

(select course _id from section where sem = ‘Fall’ and year = 2017)

union
(select course _id from section where sem = ‘Spring’ and year = 2018)

* Find courses that ran in Fall 2017 and in Spring 2018

(select course _id from section where sem = ‘Fall’ and year = 2017)

intersect
(select course _id from section where sem = ‘Spring’ and year = 2018)

* Find courses that ran in Fall 2017 but not in Spring 2018

(select course _id from section where sem = ‘Fall’ and year = 2017)

except
(select course _id from section where sem = ‘Spring’ and year = 2018)

Database System Concepts - 7t Edition 4.33 ©Silberschatz, Korth and Sudarshan



Set Operations (Cont.)

=  Set operations union, intersect, and except

Each of the above operations automatically
eliminates duplicates

= To retain all duplicates use the
union all,
intersect all
except all.

Database System Concepts - 7t Edition 4.34 ©Silberschatz, Korth and Sudarshan



Null Values

= |tis possible for tuples to have a null value, denoted by null,
for some of their attributes

= null signifies an unknown value or that a value does not exist.

= The result of any arithmetic expression involving null is null
Example: 5 + null returns null

= The predicate is null can be used to check for null values.
Example: Find all instructors whose salary is null.

select name
from instructor
where salary is null

= The predicate is not null succeeds if the value on which it is
applied is not null.

Database System Concepts - 7t Edition 4.35 ©Silberschatz, Korth and Sudarshan



Null Values (Cont.)

= SQL treats as unknown the result of any comparison involving
a null value (other than predicates is null and is not null).

Example: 5§ <null or null <>null or null =null

= The predicate in a where clause can involve Boolean
operations (and, or, not); thus the definitions of the Boolean
operations need to be extended to deal with the value
unknown.

and : (frue and unknown) = unknown,
(false and unknown) = false,
(unknown and unknown) = unknown

or: (unknown or true) = true,
(unknown or false) = unknown
(unknown or unknown) = unknown

= Result of where clause predicate is treated as false if it
evaluates to unknown

Database System Concepts - 7t Edition 4.36 ©Silberschatz, Korth and Sudarshan



Aggregate Functions

= These functions operate on the multiset of values of a
column of a relation, and return a value

avg: average value

min: minimum value
max: maximum value
sum: sum of values
count: number of values

= Produce numbers (not tables)

= Aggregates over multiple rows into one row
= Not part of relational algebra (but not hard to add)

Database System Concepts - 7t Edition 4.37 ©Silberschatz, Korth and Sudarshan



Aggregate Functions Examples

= Find the average salary of instructors in the Computer Science
department

select avg (salary)
from instructor
where dept_name='"'Comp. Sci.’;

= Find the total number of instructors who teach a course in the
Spring 2010 semester

select count (distinct /D)
from teaches
where semester = 'Spring’ and year = 2018;

=  Find the number of tuples in the course relation

select count (*)
from course;

Database System Concepts - 7t Edition 4.38 ©Silberschatz, Korth and Sudarshan



Aggregation

Product(PName, Price, Category, Year, Maker)

select AVG(price) select COUNT(*)
from Product from Product
where maker = “Toyota” where year > 1995

Except COUNT, all aggregations apply to a single attribute

Question: count(*) vs. count(price)?

Database System Concepts - 7t Edition 4.39 ©Silberschatz, Korth and Sudarshan



Aggregation: count

Purchase(product, date, price, quantity)

count applies to duplicates, unless otherwise stated

select COUNT(category)
from Product
where year > 1995

We probably want:

select COUNT(distinct category)
from Product
where year > 1995

Database System Concepts - 7t Edition 4.40 ©Silberschatz, Korth and Sudarshan



More Examples

Purchase(product, date, price, quantity)

SELECT SUM(price * quantity)
FROM Purchase

What do these mean?

SELECT SUM(price * quantity)
FROM Purchase
WHERE product = ‘bagel’

Database System Concepts - 7t Edition 4.41 ©Silberschatz, Korth and Sudarshan



Simple Aggregations

Purchase

Product Date Price | Quantity

bagel 10/21 1 20
banana 10/3 0.5 10
banana 10/10 1 10

bagel 10/25 1.50 20

SELECT SUM(price * quantity)

FROM Purchase |:> 50 (=1*20 + 1.50*20)
WHERE product = ‘bagel’

Database System Concepts - 7th Edition 4.42 ©Silberschatz, Korth and Sudarshan



Grouping and Aggregation

What GROUPIngs are possible?
- Type, Size, Color

24258 = Number Of hOIeS
== - Combination?
paper clips
trombones

Database System Concepts - 7t Edition 4.43 ©Silberschatz, Korth and Sudarshan



What GROUPings are possible?

Purchase

Product Date Price | Quantity

bagel 10/21 1 20
banana 10/3 0.5 10
banana 10/10 1 10

bagel 10/25 1.50 20

Possible Groups
- Product? (e.g. SUM(quantity) by product) # product units sold
- Date? (e.g., SUM(price*quantity) by date) # daily sales
- Price?
- Product, Date?
- <various column combinations>

Database System Concepts - 7t Edition 4.44 ©Silberschatz, Korth and Sudarshan



Aggregate Functions — Group By

= Find the average salary of instructors in each department

select dept _name, avg (salary) as avg salary
from instructor

group by dept _name,;

ID | name dept_name | salary
76766 | Crick Biology 72000
45565 | Katz Comp. Sci. | 75000
10101 | Srinivasan | Comp. Sci. | 65000
83821 |Brandt Comp. Sci. | 92000
98345 | Kim Elec. Eng. | 80000
12121 |Wu Finance 90000
76543 | Singh Finance 80000
32343 | El Said History 60000
58583 | Califieri History 62000
15151 | Mozart Music 40000
33456 | Gold Physics 87000
22222 |Einstein Physics 95000

Database System Concepts - 7t Edition

4.45

dept name | avg salary
Biology 72000
Comp. Sci. | 77333
Elec. Eng. 80000
Finance 85000
History 61000
Music 40000
Physics 91000

©Silberschatz, Korth and Sudarshan




Grouping and Aggregation

Purchase (product, date, price, quantity)

Query: Find total sales after 10/1/2005 per product.

SELECT product, SUM(price * quantity) AS TotalSales
FROM Purchase

WHERE date > “10/1/2005’

GROUP BY product

Let's see what this means...

Database System Concepts - 7t Edition 4.46 ©Silberschatz, Korth and Sudarshan



Grouping and Aggregation

SELECT product, SUM(price * quantity) AS TotalSales
FROM Purchase

WHERE date > ‘“10/1/2005’

GROUP BY product

Semantics of the query:

1. Compute the FROM and WHERE clauses
2. Group by the attributes in the GROUP BY

3. Compute the SELECT clause: grouped attributes and aggregates

Database System Concepts - 7t Edition 4.47 ©Silberschatz, Korth and Sudarshan



1. Compute the FROIV and WHERE clauses

FROM Purchase
WHERE date > ‘10/1/2005’

Product Date Price Quantity
FROM-WHERE Bagel 10/21 1 20
| > Bagel 10/25 1.50 20
Banana 10/3 0.5 10
Banana 10/10 1 10

Database System Concepts - 7th Edition 4.48 ©Silberschatz, Korth and Sudarshan



2. Group by the attributes in the GROUP BY

GROUP BY product

Product
Bagel
Bagel

Banana

Banana

Database System Concepts - 7th Edition

Date
10/21
10/25
10/3
10/10

Price

1.50
0.5

Quantity Product Date Price Quantity
20 GROUP BY 10/21 1 20
Bagel
20 10/25 1.50 20
10 10/3 0.5 10
Banana
10 10/10 1 10

4.49 ©Silberschatz, Korth and Sudarshan



3. Compute the SELECT clause: grouped attributes
and aggregates

SELECT product, SUM(price * quantity) AS TotalSales

Product | Date Price | Quantity SELECT Product TotalSales

Bacel 10/21 1 20

age

® am | w | o | 0> | sagd | w0

Banana 10/3 0.5 10 Banana 15
10/10 1 10

Database System Concepts - 7th Edition 4.50 ©Silberschatz, Korth and Sudarshan



HAVING Clause

Purchase (product, date, price, quantity)

SELECT product, SUM(price*quantity) Same query as before,
FROM Purchase except that we consider only
WHERE date > “10/1/2005’ products that have more
GROUP BY product than 100 buyers

HAVING SUM(quantity) > 100

HAVING clauses contains conditions on aggregates

Whereas WHERE clauses condition on individual tuples...

Database System Concepts - 7t Edition 4.51 ©Silberschatz, Korth and Sudarshan



General form of Grouping and Aggregation

SELECT S
FROM Rq,....R,
WHERE C,
GROUP BY a,,...,a,
HAVING C,

S: Can ONLY contain attributes a,,...,a, and/or aggregates over other attributes

C,: is any condition on the attributes in R,...,R,
C,: is any condition on the aggregate expressions

Database System Concepts - 7t Edition

4.52

©Silberschatz, Korth and Sudarshan



Aggregation (Cont.)

= Attributes in select clause outside of aggregate functions must
appear in group by list

[* erroneous query */

select dept _name, ID, avg (salary)
from instructor

group by dept _name;

Error, Why?

Database System Concepts - 7t Edition 4.53 ©Silberschatz, Korth and Sudarshan



General form of Grouping and Aggregation

SELECT S
FROM Ry, R,
WHERE C,
GROUP BY a,,...,a,
HAVING C,

Evaluation steps:
1. Evaluate FROM-WHERE: apply condition C; on the attributes in R;,...,R,
2. GROUP BY the attributes a,,...,a,

3. HAVING: Apply condition C, to each group (may need to compute aggregates)
4. SELECT: Compute aggregates in S and return the result

Database System Concepts - 7t Edition 4.54 ©Silberschatz, Korth and Sudarshan



Example

Find the names and average salaries of all departments whose
average salary is greater than 42000

select dept _name, avg (salary) as avg_salary
from instructor

group by dept name
having avg (salary) > 42000;

Note: predicates in the having clause are applied after the
formation of groups whereas predicates in the where
clause are applied before forming groups

Database System Concepts - 7t Edition 4.55 ©Silberschatz, Korth and Sudarshan



Aggregates

« Functions that operate on sets:
— COUNT, SUM, AVG, MAX, MIN

e Produce numbers (not tables)
« Aggregates over multiple rows into one row
* Not part of relational algebra (but not hard to add)

SELECT COUNT(*) SELECT MAX (Salary)
FROM Professor P FROM Employee E

56



Aggregates: Proper and
Improper Usage

SELECT COUNT (T.CrsCode), T. Profld
— makes no sense (in the absence of
GROUP BY clause)

SELECT COUNT (%), AVG (T.Grade)
— but this is OK

WHERE T.Grade > COUNT (SELECT ....)

— aggregate cannot be applied to result
of SELECT statement

57

Database System Concepts - 7t Edition 4.57 ©Silberschatz, Korth and Sudarshan



Common Mistake

SELECT ...
FROM Course
WHERE COUNT (crscode) > 5

 No aggregation allowed in the WHERE clause unless the aggregation is
inside another nested SELECT statement.

« WHERE for selecting rows, nothing to aggregate in one row

58

Database System Concepts - 7t Edition 4.58 ©Silberschatz, Korth and Sudarshan



Null Values and Aggregates

=  Total all salaries

select sum (salary )
from instructor

Above statement ignores null amounts
Result is null if there is no non-null amount

= All aggregate operations except count(*) ignore tuples with null
values on the aggregated attributes

= What if collection has only null values?
count returns 0
all other aggregates return null

Database System Concepts - 7t Edition 4.59 ©Silberschatz, Korth and Sudarshan



Nested Subqueries

= SQL provides a mechanism for the nesting of subqueries. A
subquery is a select-from-where expression that is nested within
another query.

= The nesting can be done in the following SQL query

select A, A,, ..., A,
fromr,, r,, ..., 1,
where P

as follows:
From clause: r; can be replaced by any valid subquery
Where clause: P can be replaced with an expression of the form:
B <operation> (subquery)
Where B is an attribute and <operation> to be defined later.
Select clause:
A; can be replaced be a subquery that generates a single value.

Database System Concepts - 7t Edition 4.60 ©Silberschatz, Korth and Sudarshan



Set Membership

Database System Concepts - 7t Edition 4.61 ©Silberschatz, Korth and Sudarshan



Set Membership

= Find courses offered in Fall 2017 and in Spring 2018

select distinct course id
from section
where semester = 'Fall’ and year= 2017 and
course_id in (select course id
from section
where semester = 'Spring’ and year= 2018);

= Find courses offered in Fall 2017 but not in Spring 2018

select distinct course id
from section
where semester = 'Fall’ and year= 2017 and
course_id not in (select course id
from section
where semester = 'Spring’ and year= 2018);

Database System Concepts - 7t Edition 4.62 ©Silberschatz, Korth and Sudarshan



Set Membership (Cont.)

= Name all instructors whose name is neither “Mozart” nor Einstein”

select distinct name
from instructor
where name not in (‘Mozart’, ‘Einstein’)

= Find the total number of (distinct) students who have taken course
sections taught by the instructor with /D 10101

select count (distinct /D)

from takes

where (course _id, sec_id, semester, year) in
(select course _id, sec _id, semester, year
from teaches
where teaches.ID= 10101);

= Note: Above query can be written in a much simpler manner.
The formulation above is simply to illustrate SQL features

Database System Concepts - 7t Edition 4.63 ©Silberschatz, Korth and Sudarshan



Subqueries in the From Clause

Database System Concepts - 7t Edition 4.64 ©Silberschatz, Korth and Sudarshan



Subqueries in the Form Clause

= SQL allows a subquery expression to be used in the from clause

= Find the average instructors’ salaries of those departments where
the average salary is greater than $42,000.”

select dept name, avg _salary

from ( select dept _name, avg (salary) as avg salary
from instructor
group by dept _name)

where avg salary > 42000;

= Note that we do not need to use the having clause
= Another way to write above query

select dept name, avg _salary
from ( select dept _name, avg (salary)

from instructor

group by dept _name)

as dept_avg (dept_name, avg_salary)
where avg salary > 42000;

Database System Concepts - 7t Edition 4.65 ©Silberschatz, Korth and Sudarshan



Modification of the Database

= Deletion of tuples from a given relation.
= |nsertion of new tuples into a given relation
= Updating of values in some tuples in a given relation

Database System Concepts - 7t Edition 4.66 ©Silberschatz, Korth and Sudarshan



Deletion

= Delete all instructors
delete from instructor

= Delete all instructors from the Finance department
delete from instructor
where dept name= 'Finance’;

= Delete all tuples in the instructor relation for those instructors
associated with a department located in the Watson building.

delete from instructor
where dept name in (select dept name
from department
where building = 'Watson’);

Database System Concepts - 7t Edition 4.67 ©Silberschatz, Korth and Sudarshan



Deletion (Cont.)

= Delete all instructors whose salary is less than the average salary
of instructors

delete from instructor
where salary < (select avg (salary)
from instructor);

Problem: as we delete tuples from deposit, the average salary
changes

Solution used in SQL.:
1. First, compute avg (salary) and find all tuples to delete

2. Next, delete all tuples found above (without
recomputing avg or retesting the tuples)

Database System Concepts - 7t Edition 4.68 ©Silberschatz, Korth and Sudarshan



Insertion

= Add a new tuple to course

insert into course
values ('CS-437’, 'Database Systems’, 'Comp. Sci.’, 4);

= or equivalently

insert into course (course _id, title, dept_name, credits)
values ('CS-437’, 'Database Systems’, '‘Comp. Sci.’, 4);

= Add a new tuple to student with tot creds set to null

insert into student
values ('3003’, 'Green’, 'Finance’, null);

Database System Concepts - 7t Edition 4.69 ©Silberschatz, Korth and Sudarshan



Insertion (Cont.)

= Make each student in the Music department who has earned more
than 144 credit hours an instructor in the Music department with a
salary of $18,000.

insert into instructor
select /D, name, dept name, 18000
from student
where dept name = Music’ and fotal cred > 144;

= The select from where statement is evaluated fully before any of its
results are inserted into the relation.

Otherwise queries like
insert into ftable1 select * from table1

would cause problem

Database System Concepts - 7t Edition 4.70 ©Silberschatz, Korth and Sudarshan



Updates

= Give a 5% salary raise to all instructors

update instructor
set salary = salary * 1.05

= Give a 5% salary raise to those instructors who Eran
less than 70000

update instructor
set salary = salary * 1.05
where salary < 70000;

= Give a 5% salary raise to instructors whose salary is
less than average

update instructor

set salary = salary * 1.05

where salary < (select avg (salary)
from instructor);

Database System Concepts - 7t Edition 4.71 ©Silberschatz, Korth and Sudarshan



Updates (Cont.)

" Increase salaries of instructors whose salary is over $100,000 by
3%, and all others by a 5%

Write two update statements:

update instructor

set salary = salary * 1.03
where salary > 100000;
update instructor

set salary = salary * 1.05
where salary <= 100000;

The order is important
Can be done better using the case statement (next slide)

Database System Concepts - 7t Edition 4.72 ©Silberschatz, Korth and Sudarshan



Case Statement for Conditional Updates

=  Same query as before but with case statement

update instructor
set salary = case
when salary <= 100000 then salary * 1.05
else salary * 1.03
end

Database System Concepts - 7t Edition 4.73 ©Silberschatz, Korth and Sudarshan



Updates with Scalar Subqueries

= Recompute and update tot_creds value for all students

update student S
set fot_cred = (select sum(credits)
from takes, course
where takes.course id = course.course _id and
S.ID= takes.ID.and
takes.grade <>'F’ and
takes.grade is not null);

=  Sets tot creds to null for students who have not taken any course
= |nstead of sum(credits), use:

case
when sum(credits) is not null then sum(credits)
else O

end

Database System Concepts - 7t Edition 4.74 ©Silberschatz, Korth and Sudarshan



QUERYING DATA FROM A TABLE

SELECT cl, c2 FROM ¢;
Query data in columns c1, ¢2 from a table

SELECT * FROM ¢t;
Query all rows and columns from a table

SELECT cl, ¢2 FROM t
WHERE condition;
Query data and filter rows with a condition

SELECT DISTINCT ¢1 FROM t
WHERE condition;
Query distinct rows from a table

SELECT c1, <2 FROM t

ORDER BY ¢l ASC [DESC);

Sort the result set in ascending or descending
order

SELECT ¢, 2 FROM t

ORDER BY a

LIMIT n OFFSET offset;

Skip offset of rows and return the next n rows

SELECT cl, aggregate(c2)

FROM t

GROUP BY cl;

Group rows using an aggregate function

SELECT cl, aggregate(c2)

FROM t

GROUP BY c1

HAVING condition;

Filter groups using HAVING clause

Database System Concepts - 7t Edition

SQL

SQL CHEAT SHEET http://www.sqltutorial.org

QUERYING FROM MULTIPLE TABLES

SELECT 1, c2

FROM 11

INNER JOIN t2 ON condition;
Inner join tl and 2

SELECT 1, c2

FROM t1

LEFT JOIN t2 ON condition;
Left join t1 and 1l

SELECT cl, c2

FROM t1

RIGHT JOIN t2 ON condition;
Right join 11 and 2

SELECT cl, 2

FROM t1

FULL OUTER JOIN t2 ON condition;
Perform full outer join

SELECT cl, 2
FROM t1

CROSS JOIN t2;

Produce a Cartesian product of rows in tables

SELECT &, c2
FROM 11, 2
Another way to perform cross join

SELECT c1, c2

FROM t1 A

INNER JOIN t2 B ON condition;

Join 1l to itself using INNER JOIN clause

sqltutorial.org/sgl-cheat-sheet

4.75

USING SQL OPERATORS

SELECT cl, ¢2 FROM 11
UNION [ALL]

SELECT 1, ¢2 FROM 12,
Combine rows from two gqueries

SELECT ¢l, 2 FROM 11

INTERSECT

SELECT cl, c2 FROM t2;

Return the intersection of two queries

SELECT 1, <2 FROM 11

MINUS

SELECT €1, ¢2 FROM t2;

Subtract a result set from another result set

SELECT cl, c2 FROM 11
WHERE c1 [NOT] LIKE pattern;
Query rows using pattern matching %, _

SELECT c1, c2 FROM t
WHERE ¢l [NOT] IN value_list;
Query rows in a list

SELECT c1, ¢c2 FROM t
WHERE ¢1 BETWEEN low AND high;
Query rows between two values

SELECT c1, c2 FROM t
WHERE <1 1S [NOT] NULL;
Check If values in a table is NULL or not

©Silberschatz, Korth and Sudarshan



End of Chapter 3

Database System Concepts - 7t Edition 4.76 ©Silberschatz, Korth and Sudarshan



